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Abstract. A classically chaotic model with a strange attractor introduced by Kaplan and 
Yorke is quantised and analysed in the Heisenberg picture. The equivalence is shown to 
quantisation in the Schrodinger picture given earlier by one of the authors. As an advantage 
of the approach presented here, the expectation values of observables can be calculated. 
It is shown that in expectation values the limits h + 0 and t + m commute. 

1. Introduction 

The study of quantum systems which are chaotic in their classical limit continues to 
be of high interest (for a review see Eckhardt (1988)). Chaos in dissipative classical 
systems is associated with the appearance of strange attractors (Lichtenberg and 
Lieberman 1983). Classically chaotic quantum models with dissipation can be construc- 
ted by the coupling of ‘small’ quantum systems to heat baths (Graham 1983a, 1985, 
Graham and Tel 1985, Graham er a1 1988, Dittrich and Graham 1986). The elimination 
of the heat bath in some approximations then leads to a master equation for the 
statistical operator, which has to be solved numerically. Unfortunately, it is not 
possible, by these methods, to obtain rigorous results because the derivation of the 
master equation uses perturbation theory with respect to the system-bath interaction 
and, for classically chaotic systems, the master equation cannot be solved analytically. 

It is therefore of interest that an exactly solvable classical model exists, exhibiting 
a strange attractor (Kaplan and Yorke 1979), which can be quantised exactly, in a 
special case (Graham 1983a, 1985). In this earlier work the quantisation was given in 
the Schrodinger picture and directly yielded the master equation for the statistical 
operator without approximation. The Wigner function of the statistical operator in 
the steady state could then be constructed exactly and was used to show what happened 
to the strange attractor in the quantised version. The main reason for solubility was, 
as usual, an unphysical feature: the existence of a limiting situation of ‘global dissipa- 
tion’ where a ‘semi-Hamiltonian’ treatment (Graham 1985) is possible, with a ‘Hamil- 
tonian’ which generates time translations in only one ‘future’ direction (cf section 2). 

There are a number of questions which have not yet been answered in the earlier 
work on this exactly solvable model, which we would like to consider in the present 
paper. In view of the ‘semi-Hamiltonian’ nature of the problem it is not clear a priori 
whether a Heisenberg picture can be meaningfully defined. This question seems to be 
even more important in view of the fact that the results obtained in the Schrodinger 
picture yielded the Wigner function but could not be used, so far, to obtain explicit 
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results for the expectation values of the basic observables whose classical values are 
readily obtained from the classical model. One might hope, therefore, that quantisation 
of the model in the Heisenberg picture would be able to yield such results quite directly 
without the necessity to deal, as an intermediate step, with the. complexities of the 
Wigner distribution corresponding to the classically chaotic state. This expectation is, 
indeed, borne out by our findings. The new results for the expectation values derived 
here are used to establish the commutability of the limits h + 0 and t + a. 

This paper is organised as follows. The next section contains a brief account of 
the classical model and of some of its properties which we shall need in section 5 .  
Section 3 discusses the quantisation of the model in the Schrodinger picture, adding 
some new results to those contained in Graham (1983a, 1985). In section4 the 
Heisenberg quantisation of the model is derived from the Schrodinger quantisation. 
Finally, in section 5 we present applications to the evaluation of expectation values 
and prove the interchangeability of the limits h + 0, t + 03. 

2. The classical model and expectation values 

The Kaplan-Yorke model (Kaplan and Yorke 1979) is a discrete dynamical system, 
described by the family of two-dimensional mappings: 

x ,+~  = 2x,(mod 1) ( 2 . 1 ~ )  

(2.lb) 

It is assumed that Ih( < 1 and that f :  [0,1) + R be extended to the whole of R by 

f ( x +  1) =f (x) .  (2.2) 

The Jacobian of the mapping (2.1) being (2A), the system is dissipative for (AI<;. If 
A =+ there is a local area preservation. In this case, and in order to render the model 
more interesting, we assume (with Graham (1983a)) that 

(2.3) 

Under the above assumption, the mapping (2.1) is non-invertible and we shall refer 
to this case as 'globally dissipative' (Graham 1983a, 1985). Chaotic behaviour, i.e. 
sensitive dependence on initial conditions, is guaranteed by the form of (2.1), which 
allows the computation of the two Lyapunov exponents A l= ln2  and A,=lnh. 
Moreover, it is found (Kaplan and Yorke 1979) that the system exhibits a bounded 
attractor, which is therefore necessarily 'strange' (Eckmann and Ruelle 1985). The 
case A = f  lies at the threshold of the Kaplan and Yorke conjecture concerning the 
Hausdorff dimension (Kaplan and Yorke 1979), but an extrapolation of the conjecture 
to this case suggests that the Hausdorff dimension of the attractor equals two if A = f. 

Let (xo, yo) be the initial values for the map (2.1). Iterating the map n times, we 
obtain 

x, = 2"xo(mod 1) 

y, = Anyo+ Alf(2"-'-'x0). 
n-1  

/ = 0  

( 2 . 4 ~ )  

(2.46) 
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From the above equations the conditional probability P , ( y  I x; y o )  may be derived 
(Graham 1983b): 

whence one may conclude that the distribution is, for each n, concentrated on the set 
of curves: 

Taking n + Q? and assuming IA I < 1,  (2.6) leads us to define the attractor as the closure 
of the set of curves: 

(2.7) 

A mathematically rigorous approach, based on a proper definition of the (ergodic) 
limit n + cc in (2.5), is given in Mayer and Roepstorff (1983): it leads, however, to the 
same result (2.7). 

We shall now compute some classical expectation values, particularly of functions 
of the variable y-the '(angular) momentum'-which we shall need in section 5. For 
this purpose we set the initial distribution PO(X0) = 1 (the uniform distribution) (other 
choices could be made) and, for definiteness 

f ( x )  = -sin(47rx). (2.8) 

Note that the above f satisfies (2.2) and (2.3). Let p be a positive integer. Then, by 
(2.461, 

In order to proceed, we need to evaluate the product of k sines. If k is even, it reduces 
to a sum of cosines, if k is odd it reduces to a sum of sines which yield zero contribution 
to the integrals. We may thus perform the integration in (2.9), obtaining 

l k e v e n )  

x s( 
y = 1  

(2.10) 

where [ p ]  denotes the greatest even integer smaller or equal to p and 6 is the Kronecker 
delta. Hence 

lim ( y : )  = ( y s )  = 0 if p is odd. (2.11) 
n-ZS 

When p is even, for n +cc only the term k = p in the first summation survives, and 

(2.12) 
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For finite n we have 

1 1-A2" 
2 1 - A '  (Y3 =- - 

3 1-A'" 3 1-h4n 1 - ~ ( n - 2 1 4  

( y ' , ) = A 4 " y : + 3 A 2 " y a f - ( ~ )  4 1-A -- 8 1-,i4 :A i - ~ ~  . 

(2.13) 

(2.14) 

The results (2.13) and (2.14) were first obtained by Jensen and Oberman (1981). For 
the expectation values also involving the variable x, we have 

n-1  

(2.15) 

if p ,  q are positive integers. The above expression may be evaluated as before. 

3. Schrodinger-Wigner quantisation of the model 

Consider, now, the map (2.1) for A =:, which we rewrite in the form 

qn+i=Zqn(mod 1) (3 . la)  

P n + l =  t P n  - g ( q n )  (3.lb) 

wheref= -g' satisfies (2.2) and (2.3). This map has been quantised in the Schrodinger 
picture in Graham (1983a, 1985), to which we refer for details. 

Defining the density matrix p. at time n one obtains the master equation (Graham 
1983a) 

Introducing the Wigner function 

one obtains (Graham 1983a) 

- g( ( q  - ffix)(mod 1) + m 
2' 

(3.3) 

(3.4) 

The classical limit of the asymptotic Wigner function is obtained upon performing 

lim W,( p ,  q )  = f m  lim Wn( p ,  4). 
h -0  -0 n - r  
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If we formally interchange these limits in (3.4), we obtain, upon expanding g up to 
the first order in h and doing the integral in x, 

c€ 

F,(q) = - 2-‘g ($:). - 
1=0 

Comparing with ( 2 . 5 )  we see that the correct classical result obtains. However, it is 
difficult to make rigorous this interchange of the limits h + 0 ,  n+cc. Therefore, a 
different strategy based on the Heisenberg picture is followed in section4, which 
demonstrates the interchangeability of the two limits at least for all moments. 

The next term in the expansion of g is third order in h, because the second-order 
terms cancel: 

where sc stands for ‘semiclassical’, Ai for the Airy function, and 

The above result shows that each branch p=F,,,(q) of the classical attractor is 
delocalised with a width of order (Am(q))1’3,  and hence proportional to h2’3. For this 
reason, the attractor does not survive quantisation (see Graham (1983a) for a full 
discussion). 

One question one is tempted to ask in the general framework of Schrodinger-Wigner 
quantisation, as applied to the present model, is in what respects the semiclassical 
behaviour of the Wigner function differs from its well studied counterpart for integrable 
systems (Berry 1977, Ozorio de Almeida 1988). For one-dimensional integrable systems 
just three types of semiclassical behaviour are found, according to whether two, three 
or four stationary points (corresponding to a stationary phase analysis of the integral) 
coalesce (‘fold catastrophe’, ‘cusp catastrophe’ and ‘swallow-tail catastrophe’, respec- 
tively-see Berry (1977)). The semiclassical behaviour corresponding to the ‘fold 
catastrophe’ shows up in (3.7) and (3.8): (3.7) follows from (3.4) upon expanding g 
up to third order in h, and performing a change of variable in the x integration. The 
latter results in the appearance of the Airy function, but is allowed only if A,,,(q) # 0, 
where Am is defined by (3.8). If A m ( q )  = 0 for some q E [0, l ) ,  and some fixed rn, we 
expand g up to fifth order in h (the fourth-order terms cancel) and perform the limit 
n +CO formally under the integral in (3.4). Define 

where g‘5’ denotes the fifth-order derivative of g, and suppose that, for fixed m = m, 
and q, Tnb(q) Z 0. Then the leading h contribution of this term to (3.4) may be written 
as 

where Fm is given by (3.7). 
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Note that both A,( ) and T,( ) are almost-periodic functions (Bohr 1947). It is 
expected that they possess no common zeros, but for the moment we need only pick 
some q which is a zero of A, but not of T,: we have checked numerically that such 
q exist for mo= 0. Performing the change of variable x '  = f ~ + ~ / ~ x ( T , , , ( q ) ) ~ / ~  upon (3.10) 
we obtain 

(3.1 1) 

Hence if the function 

h ( A )  E [-: dx exp[ -i( xA +: x5)] 

is bounded (which may be checked by contour integration techniques similar to those 
employed to prove the same assertion for the Airy function) we see that W:; in (3.11) 
attains a maximum value of order K4/', typical of the 'swallow-tail catastrophe' (Berry 
1977). Nevertheless, in order that this behaviour, derived above for fixed m = mo (the 
corresponding curve being the analogue of the torus in the integrable systems treated 
by Berry), manifested itself globally in the Wigner function (3.4), it would be necessary 
that the almost-periodic function 

had zeros in a subset of {lo, lo+ 1, .  . . , &+2" - l}, whose number of points increased 
proportionally to 2", as n + CO, where lo is a zero of A (  ). This fact is due to the average 

m = O  in (3.4). Due to almost-periodicity of A( ) as opposed to the periodicity 
found in the analogous integrable systems, this possibility is excluded. Hence the 
swallow-tail catastrophe, which is generic for one-dimensional integrable systems in 
a cylindrical space (Berry 1977), does not show up in this model. Other types of 
behaviour are excluded by the non-existence of common zeros of A,,, and T,-a fact 
which may be safely assumed to be true, but is difficult to prove, and cannot even be 
verified numerically because numerical analysis enforces truncations which render the 
various almost-periodic functions periodic. Summarising, the main qualitative 
difference between the present model and integrable systems lies in the 'average over 
t omes '  and the appearance of almost-periodic functions in (3.4). 

As a last remark, note that the Wigner function defined in Berry (1977) as appropriate 
to a cylindrical space is given in the present model by 

2-n ~ . 2 ' ' - 1  

1 /2 

*,,(PI, q )  = dx exp(-2.rrilx)(q+x/2jpnIq -x/2) (3.12) 

where p,=2.rrAl, where 1 is integer. The two definitions (3.3) and (3.12) are two 
alternative representations of the statistical operator pn.  Inverting (3.3) and (3.12) we 
obtain 

L2 

(3.13) 

"> = exp(2rilx) l@"(pI, q )  (3.14) 
x(mod 1) 

l = - W  
( q +  2 Ipnlq- 
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respectively. Using (3.13) on the right-hand side of (3.12) we may express *,, in terms 
of W,, as 

(3.15) 

As the left-hand side of (3 .13)  is periodic in x with period 2 only (nor period 1 )  it 
follows from (3.3) that W,,(p, q )  may be written as 

(3.16) 

where 

P,,(k, q )  = Io1 dx(q+xlp,lq -x)  exp(-2rikx). (3.17) 

With 1q + 1) = Iq), (3.17) implies 

Pn(k q+f )=( - l )kPn(k ,  9). (3.18) 

Using (3.16) in (3 .15)  we find 

(3.19) 

Vice versa, we may use (3.14) on the right-hand side of (3.3) to express W,, in terms 
of *,,. However, before inserting (3.14) it is necessary to re-express (3 .3 )  as 

(3.20) 

where the summation over the integer m is introduced to compensate the restriction 
of the integration over x to the interval [ -;,;I. The summation over m may be carried 
out by the Poisson summation formula and we obtain a result of the form (3.16) with 

Pn(k q)=%*n(pk/2, q ) +  *n(Pk/2, q + f ) )  k even 
+CO (-l)l+(k-l)/2 (3.21) 

Pn(k q ) = !  C ( * n ( p l ,  4 ) -  * n ( p l ,  q + i ) )  k odd. 

Thus the two Wigner functions W and * are both valid representations of the statistical 
operators. In order to calculate expectation values of observables with the help of the 
Wigner function the observables have to be Weyl ordered but, obviously, the rules for 
Weyl ordering differ in the two cases. The Weyl order of an observable A corresponding 
to (3.3) is 

/=-a r( k / 2  - I )  

while that corresponding to (3.12) is 

(3.23) 
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The two representations A(p ,  q ) ,  A ( p , ,  q )  may again be expressed in terms of each 
other. The expectation value of A is given by the two equivalent expressions: 

(An)=[+idp  lo dqA(p,q)Wn(P,q)= /=-m 2 [‘dqR(P/ ,q)@n(P/ ,q)  0 (3.24) 

as may be verified by using the relations given above. The two alternative representa- 
tions differ only by terms which, in the semiclassical limit, oscillate infinitely rapidly 
with respect to the angular momentum, as can be seen explicitly in (3.18) and (3.21). 
In the asymptotic expansion (3.7) such terms do not contribute. Therefore, asymptoti- 
cally, W(p, q )  and k ( p ,  q )  are both represented by (3.7). 

As we saw in this section, for the model under investigation, the Wigner phase-space 
density in the semiclassical limit is as powerful as in the case of integrable systems, 
allowing for results of comparable generality. A mathematically rigorous proof of the 
expected interchangeability of the limits h + 0 in n -+ 00 using the Wigner function is, 
however, not easy, as remarked after (3.4), and the actual computation of expectation 
values of observables is rather awkward in the Wigner formulation. These disadvan- 
tages are, however, exactly the advantages of the Heisenberg picture which we now 
consider. 

N F de Godoy, R Graham and W F Wreszinski 

1 

-m 

4. Heisenberg picture 

The equation of motion (3.2) in the Schrodinger picture is written in the eigenrepresenta- 
tion of the phase operator J which, following Judge and Lewis (1963) (cf also Carruthers 
and Nieto (1968)), we define by 

4 4 )  = q h o d  1)lq) (4.1) 
with 

m 02 

q ( m o d l ) = q -  O ( q - m ) +  1 0 ( - q + m ) .  
m = l  m=O 

We note the orthogonality relation: 
+a3 

(qIq’)= S ( q - q ‘ - m ) ~ S “ ’ ( q - q ’ ) .  (4.2) 
m = - m  

For later use we also note the properties, for integer m, 

Furthermore, we give the commutation relation of the angular momentum operator 
p = i h  d/dq and the phase operator J 

(4.4) 
In order to define a Heisenberg picture we consider the evolution of the expectation 
value of an arbitrary observable R. The matrix elements of R, (qIRlq’), are 1-periodic 
in q and in q‘ .  

[$, J] = h/i  - h/i  S ( ’ ’ ( q ) .  

From 

(an)  = Tr P ~ Q  (4.5) 
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(4.6) 

(4.7) 

where p is the statistical operator at time n = 0. Using (3.2) in (4.6) and using (4.7) 
and the fact that (q’ lplq)  is an arbitrary initial state we obtain 

(q~a,,+~~q’) = 2  exp(; 2i ( g ( q ) - g ( q ’ ) ) ) [ O ( f - q ) B ( f - q ’ ) + O ( q  -f)o(q’-f)l(e41s2,124‘j. 

(4.8) 
Equation (4.8) is the equation of motion of an arbitrary observable in the q representa- 
tion and, together with (4.7), defines the Heisenberg picture. We may now evaluate 
(4.8) for the operators R = 4 and R =cy respectively. The calculation is greatly sim- 
plified by considering (4.6) in the i,, representation. Then we find 

(qn141+11q;) = (2q;)(mod 1)[8“’(qfl- q ; )  + ~ “ ’ ( q f l  - q ;  -91 
(4.9) 

x [ o ( t - q , ) O ( f - q b ) + O ( q ,  -f)o(q;-f)] 

where we have used (4.3) to simplify S(”(2x). Due to the presence of the 0 functions, 
the function S“’( q1 - q2 - f) in (4.9) does not contribute and can therefore be dropped. 
Then, the values of q and q’ in the 0 functions can be taken as equal to each other 
and hence the 0 functions containing q’ can be replaced by 1. After that, the two 
remaining 0 functions containing q simply add up to 1. We obtain 

(qfllifl+llqb) = (2qXmod l ) a ( l ’ ( q f l  - 9;). (4.10) 

Therefore anti is diagonal in the 4, representation and its eigenvalues in that representa- 
tion satisfy 

qfl+l = (2q,,)(mod 1). (4.11) 

However, due to the modulo presciption on the right-hand side a simple operator 
equation independent of the q representation cannot be given. Let us now choose 
R, =in in (4.6). We then obtain for q,, q ;  E [ O , i )  and q., q: E [f, 1) 

(sfllijfl+liq;> = f  exp(; ( g ( q , )  - g ( q ; ) )  - [ a ( ” ( q ,  - q ; ) ~  (4.12) 
2i h a  ) 1 aqfl 

and for q. E [0, f), q ;  E [ t ,  1) or q,, E [f, 11, q ;  E [0, i) we have 

( ~ f l l P * f l + l l ~ ~ )  = 0. 

Equations (4.12) and (4.13) may be combined to yield 
(4.13) 

(4.14) 

which can be written in operator form independent of the representation used as 

P l n + 1 =  ;A- g’(4fl). (4.15) 
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Equations (4.10) and (4.15) are the equations of motion of the Kaplan-Yorke model 
in the Heisenberg picture. As in the case of the Schrodinger picture the parameter A 
of the classical model (2.1) must be restricted to A = i. The case A # can no longer 
be treated exactly and has been analysed, in the Schrodinger picture, in Graham (1985). 

Equations (4.10) and (4.15) are easily solved. It follows from (4.10) that in is 
diagonal in the qo representation and acts, in that representation, as the multiplication 
operator 

in = (2"qo)(mod 1). (4.16) 

Then it follows from (4.15) in the same representation that 
n-1 

Pln = (1/2)"$0- c (1/2)"g'(2"-'-' 4 0 )  
I = O  

(4.17) 

with 

io= -ih d/dqo. (4.18) 

These expressions are used, in the following section, for evaluation of expectation 
values. 

5. Expectation values 

We now present results on expectation values and establish the interchangeability of 
the limits n + 03, h + 0. For the sake of concreteness we shall always assume that the 
initial state of the system at n = 0 is the state of vanishing angular momentum 

P l O l O )  = 0 (4010) = 1. (5.1) 

g'(x) = s i n ( 4 ~ x )  (5.2) 

Furthermore, we specialise to the case 

but any infinitely differentiable function with the required periodicity property would 
be allowed in our proof. First we consider expectation values of powers of $,,. It is 
convenient to define the function 

We note the symmetry 

Then we may write 

For r odd the integrand changes sign under transforming qo+ 1 - qo and the integral 
therefore vanishes, in agreement with the corresponding classical result. We now 
consider the case of even r. Starting with r = 2 we have 
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Using the properties $,JO) = 0, (Ol$o = 0 we obtain 

( O l P * ~ l O )  = jo' dqo S i ( q o )  (5 .7)  

which is the classical result (2.9) and (2.13). Turning to r = 4 and biinging the io 
factors symmetrically to the left and right, we find 

(5 .8)  
L 

where 

[$a, S,(qo)l= -ihS',(qo) (5.9) 

and we have used the fact that S,(qo)] commutes with functions of qo. The first 
term on the right-hand side of (5.8) is just the classical result, as follows from (2.9). 
The second term is a quantum correction which is proportional to h 2 .  By methods 
analogous to those used for the classical expectation values this quantum correction 
may be evaluated explicitly and we obtain 

(5.10) 

The same method may be applied to the calculation of moments of $,, of higher order. 
The result is of the form (for r even) 

(5.11) 

The coefficients C m ( n )  are finite and bounded for all n. To see this, we first note that, 
for finite n, C,  ( n )  is calculable as the average of a finite product of functions S,  ( qo) 
and derivatives of S,,(qo) of up to mth order. The kth derivative Sik'(q0) of S,,(qo) 
(with ks m )  is bounded by 

2k" - 1 
I S l ' ( q ) l  (27r)k2k"-k'= (27r)k - ( 1 / 2 ) k .  

i=o 
(5.12) 

In the expression for C,( n )  the derivative SLk'( q )  appears multiplied by an additional 
factor 2Tk" because, due to (4.17), each plo appears multiplied by 2-". Therefore, 
Cm(OO) = limn+m C m ( n )  will exist if limn+= 2 -  S, (9)  exists, which is guaranteed by 
the bound (5.12) on ISy ' (q) l .  We may therefore perform the limit n+m in (5.11) 
before taking h + 0 and obtain 

k n  ( k )  

(5.13) 

Taking now h+co we obtain the classical result, which shows that the two limits 
commute. This result is trivially extended to arbitrary moments of in, which receive 
no quantum corrections at all because (4.11) is uncoupled from 5 and identical to the 
classical equation ( 2 . 1 ~ ) .  Mixed moments of en and q*, may again be handled by 
commutator methods. Again it is easy to show that the quantum corrections remain 
finite for n + 00 and vanish by taking h + 9 afterwards. The convergence of all stationary 
moments ( n  + CO) to the classical moments implies that the Wigner phase-space density 
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evaluated for n + 03 must converge to the classical phase-space probability density ‘in 
distribution’ (equality of all moments). 

Rigorous results on the semiclassical limit of Hamiltonian systems (Hepp 1974, 
Ginibre and Vel0 1980, Blanchard and Sirigue 1985) show that the limits h + 0 and 
t + 03 (in our case n + 03) never commute. Our result is not in conflict with these 
rigorous results because of the non-Hamiltonian nature of the dynamics of the Kaplan- 
Yorke model even for A =$. In the Schrodinger picture the non-Hamiltonian nature 
appeared by the necessity to consider mixtures rather than pure states and to formulate 
the dynamics by a master equation. In the Heisenberg picture the equations of motion 
for q*,, and &,, even though conserving the commutation relations, can also not be 
derived from a Hamiltonian. The most important consequence is the lack of invertibility 
of the quantised dynamics, which means that loss of information is inextricably tied 
to the time evolution in this model. This latter aspect of our quantum model is shared 
by all dissipative quantum systems, i.e. our results which are based on this property 
can be expected to be typical also for physically more realistic dissipative systems, 
which are chaotic in their classical limit. It is the loss of information and the connected 
increase in entropy which drives our system to a unique steady state whose classical 
limit conicides with the classical steady state. More relatistic quantum systems with 
dissipation are modelled by coupling to reservoirs and tracing the density matrix over 
the reservoirs. Then a loss of information is again connected with the time evolution, 
and one may expect that the limits h + 0 and t + CO commute even though, in cases 
involving chaotic classical dynamics, a rigorous proof will be much more difficult than 
in the simple model considered here. 
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